曲阜师大赵岩,中科院医学所渠凤丽AHM:设计构建氧气耗尽纳米装配体实现肿瘤区域原位栓塞及细胞代谢重编程
时间:2024-10-11 12:03:38 热度:37.1℃ 作者:网络
肿瘤细胞的代谢改变和血液供氧失衡是导致肿瘤难以根治的关键因素。如何同步调控肿瘤细胞代谢和阻断营养供给,实现肿瘤区域栓塞和“饥饿疗法”,是一条具有挑战但潜力巨大的新途径。来自曲阜师范大学的赵岩和中科院杭州医学所的渠凤丽教授团队等在最新一期Advanced Healthcare Materials期刊上报道了她们的创新性工作“Valence-Transforming O2-Depleting Nano-Assembly Enable In Situ Tumor Depositional Embolization”。
研究人员选择了Fe(II)的氧化特性,设计并合成了一种纳米装配体Fe-GA@CaCO3,其中Fe(II)与天然植物酚没食子酸(GA)形成Fe-GA纳米复合物,再被碳酸钙(CaCO3)外包膜包覆而成。对应于肿瘤区域和肿瘤细胞内的O2消耗剂和栓塞剂。Fe(II)在没O2的情况下与没食子酸(GA)配位,然后被CaCO3包封形成纳米级组装Fe-GA@CaCO3。CaCO3响应性分解提高了肿瘤微环境的pH值,同时Fe-GA暴露,Fe-GA中的Fe(II)对O2不稳定,纳米级Fe(II)-GA发生氧化反应,消耗O2生成微尺度Fe(III)沉淀,肿瘤区域内原位生成Fe(III)沉淀,通过阻断营养供应和降低肿瘤内的O2含量,实现肿瘤栓塞和饥饿治疗。同时,CaCO3分解产生大量游离Ca2+,导致细胞内钙稳态系统失调。进而导致线粒体膜电位和细胞内ATP含量降低,最终造成不可逆的细胞损伤。内部和外部细胞途径协同协作,实现肿瘤的精确功能抑制(图1),同时对细胞内过程和相关肿瘤区域作出反应,从而为抗肿瘤治疗提供了突破性的方法。
图1 Fe-GA@CaCO3作为肿瘤微环境响应型O2消耗剂,用于肿瘤区域栓塞和肿瘤细胞新陈代谢调控。
在模拟肿瘤酸性微环境中,CaCO3壳层会发生解离,暴露出Fe-GA纳米颗粒。图2A显示,在较低pH值下,纳米装配体表现出时间依赖的形貌和粒径变化,从最初的均一纳米颗粒逐渐转变为不规则微米级大颗粒。这是因为GA配体上的Fe(II)在暴露到O2后会失去稳定性,发生氧化还原反应生成Fe(III)沉淀。进一步的表征(图2B-C)显示,酸响应后样品中出现了Fe(III)特征峰,同时CaCO3也发生了酸解离。在不同pH值下,Fe-GA@CaCO3对溶解氧的消耗速率(图2D)和Ca2+/Fe3+的释放速率(图2E-F)也呈现出明显的pH依赖性。这些现象共同证实了该纳米装配体具有pH响应性能,在模拟的肿瘤酸性环境中发生解离反应并引发一系列级联反应。
图2 Fe-GA@CaCO3酸性肿瘤微环境响应特性。
研究人员进一步探究了这一反应过程对肿瘤细胞的影响。图3显示,在适度浓度下,Fe-GA@CaCO3对肿瘤细胞生存率的影响较小,但长时间作用后会导致明显的细胞形态学变化(图3C)。机理研究揭示,这一过程中Fe(III)产生的大分子量沉淀物可以堵塞血管从而阻断肿瘤区域的营养供给,而同时释放的Ca2+会导致细胞钙超载,破坏线粒体功能和产生大量ROS,最终诱导肿瘤细胞发生铁死/坏死性细胞死亡(图4)。
图3 Fe-GA@CaCO3在胞内对O2的消耗及破坏细胞代谢平衡。
图4 Fe-GA@CaCO3的体内肿瘤抑制。
总之,这项工作设计构建了一种具有双重功能的纳米装配体,能够同步调控肿瘤细胞内外环境,通过阻断营养供给和重塑细胞代谢途径,实现肿瘤区域的原位栓塞和细胞代谢重编程,从而达到高效抑制肿瘤的目的。这一策略为建立新型“肿瘤饥饿疗法”模式提供了有力支撑,对发展高效且低毒的个体化肿瘤治疗方案具有重要价值和广阔前景。
原文链接:
https://onlinelibrary.wiley.com/doi/10.1002/adhm.202402899